Umeå University, Department of computing science

Umeå University is one of Sweden’s largest higher education institutions with over 37,000 students and about 4,700 employees. The University offers a diversity of high-quality education and world-leading research in several fields. Notably, the groundbreaking discovery of the CRISPR-Cas9 gene-editing tool, which was awarded the Nobel Prize in Chemistry, was made here. At Umeå University, everything is close. Our cohesive campuses make it easy to meet, work together and exchange knowledge, which promotes a dynamic and open culture.

The ongoing societal transformation and large green investments in northern Sweden create enormous opportunities and complex challenges. For Umeå University, conducting research about – and in the middle of – a society in transition is key. We also take pride in delivering education to enable regions to expand quickly and sustainably. In fact, the future is made here.

Are you interested in learning more? Read about Umeå university as a workplace

The Department of Computing Science, Umeå University, is seeking outstanding candidates for a PhD student position in Computer Science with focus on trustworthy learning for anomaly detection. Deadline for application is 25th April 2021.

The position funded by The Knut and Alice Wallenberg Foundation through The Wallenberg AI, Autonomous Systems and Software Program (WASP), Sweden’s largest ever individual research program, and a major national initiative for strategic basic research, education and faculty recruitment. The vision of WASP is excellent research and competence in artificial intelligence, autonomous systems and software for the benefit of Swedish society as well as industry. For more information about the research and other activities conducted within WASP please visit

The graduate school within WASP provides foundations, perspectives, and state-of-the-art knowledge in the different disciplines taught by leading researchers in the field. Through an ambitious program with research visits, partner universities, and visiting lecturers, the graduate school actively supports forming a strong multi-disciplinary and international professional network between PhD students, researchers and industry. It thus provides added value on top of the existing PhD programs at the partner universities, providing unique opportunities for students who are dedicated to achieving international research excellence with industrial relevance.

Project description

Classical machine learning algorithms are more trustworthy than deep learning because they are less complex and less opaque. On the other hand, they have large disadvantages. The use of machine learning for defense of computer systems against growing security and privacy attacks accelerate challenges to ensure accurate and robust models. Security and privacy of learning models are largely ignored, though they are key for safety and security critical application domains such as healthcare, automotive and robotics, industry 4.0, and cyber-physical systems. Such attacks can manipulate, evade, fool, misled the learning models or systems at any levels, e.g., data, model, and output. As a result, current detection and defense models lead to catastrophic performance, loss of user’s privacy and trust, and may also incur a substantial financial loss for cloud service providers. Hence, the proposed models for detection, defense, and root-cause analysis of anomalies need to be more robust and resilient to both security and privacy attacks.

The aim of this project is primarily to develop trustworthy learning methods for anomaly detection, defense, and root-cause analysis to increase model robustness, adaptability, resilience, and transparency. We propose to design and implement trustworthy machine learning algorithms for anomaly detection, defense and root-cause analysis under adversarial settings. These algorithms rigorously investigate the input, model and output leveraging (a) geometric and statistical distribution of data, (b) adversarial features with significant amount of attack variation, (c) internal behavior analysis of models, (d) model-agnostic vulnerability analysis, (e) security and privacy-aware design of models to address the evolving adversarial attacks. These features improve the performance, scalability, robustness and transparency of the data, models and inference. They will also have great potential for application to edge clouds, Internet of Things (IoT), healthcare, and industry 4.0 under adverse conditions.

The position is aimed for graduate studies in Computing Science within the autonomous distributed systems lab, but collaboration with researchers in, e.g., machine learning, mathematical statistics, optimization, trustworthy learning, deep learning or artificial intelligence is expected. (For further information, see

Admission requirements

The applicant is required to have completed a second-cycle level degree, or completed course requirements of at least 240 ECTS credits, of which at least 60 ECTS credits are at second-cycle level, or have an equivalent education from abroad, or equivalent qualifications.

To fulfill the specific entry requirements for doctoral studies in computing science the applicant is required to have completed courses at advanced level in computing science or another subject considered to be directly relevant for the specialization in question, equivalent to 90 ECTS credits.

Documented knowledge and a solid background in machine learning and security or distributed systems is a requirement. The research is to a large extent interdisciplinary, and a broad competence profile and experience from other relevant areas (such as machine learning, distributed learning, adversarial learning, deep learning, IoT, discrete optimization, and statistical methods) is considered a merit.

Important personal qualities are, beside creativity and a curious mind, the ability to work both independently and in a group and experience in the scientific interaction with researchers from other disciplines and in other countries. Good skills in both spoken and written English are a requirement for the position. 

Terms of employment

The position is aimed for PhD studies and research equivalent of four years full-time, leading to a PhD degree. It is mainly devoted to postgraduate studies (at least 80% of the time), including to take part in the WASP Graduate School, but may include up to 20% department service (usually teaching). If so, the total time for the position is extended accordingly (up to maximum five years). The employment will start as soon as possible, or as otherwise agreed.

Submitting your application

A complete application should contain the following documents:

  • A cover letter including a description of your research interests, your reasons to apply for the position, and your contact information
  • A curriculum vitae
  • Certified copies of degree certificates and other completed academic courses
  • Reprints / copies of Bachelor’s / Master’s thesis, and other relevant publications, if any
  • Contact information for two reference persons
  • Documentation and description of other relevant experiences or competences, such as from software development and work in or with industry.

The application must be written in English or Swedish. Documents must be in Word or pdf format. Applications must be submitted electronically using the e-recruitment system of Umeå University, and be received no later than 25th of April, 2021. 

The department of Computing Science is actively striving for gender balance, and thus encourages applications from women.

The procedure for recruitment for the position is in accordance with the Higher Education Ordinance (chapt. 12, 2 §) and the decision regarding the position cannot be appealed.

Further information can be obtained from Assistant Professor Monowar Bhuyan, (email: and Professor Erik Elmroth (email:

More about us:

The Department of Computing Science is a dynamic environment with over 120 employees representing more than twenty countries worldwide. We conduct education and research on a broad range of topics in Computing Science. The focus of the research in the Autonomous Distributed Systems Lab is to design, develop, deploy distributed learning algorithms for (autonomous) resource and application management for different types of IoT, IIoT, edge clouds and large-scale complex systems.

We look forward to receiving your application!

Type of employment Temporary position
Contract type Full time
First day of employment As soon as possible or otherwise agreed
Salary Monthly
Number of positions 1
Full-time equivalent 100%
City Umeå
County Västerbottens län
Country Sweden
Reference number AN 2.2.1-288-21
  • Monowar Bhuyan, 090-7866705
Union representative
  • SACO, 090-786 53 65
  • SEKO, 090-786 52 96
  • ST, 090-786 54 31
Published 02.Mar.2021
Last application date 25.Apr.2021 11:59 PM CEST

Return to job vacancies